Effects of beam pointing instability on two-beam interferometric lithography
نویسندگان
چکیده
In a photolithographic system, the mask patterns are imaged through a set of lenses on a resist-coated wafer. The image of mask patterns physically can be viewed as the interference of the plane waves of the diffraction spectrum captured by the lens set incident on the wafer plane at a spectrum of angles. Two-beam interference fringe is the simplest format of the image. Consequently, two-beam interferometric lithography is often employed for photolithographic researches. For two-beam interferometric lithography, beam pointing instability of the illumination source can induce fringe displacement, which results in a loss of fringe contrast if it happens during the exposure. Since some extent of beam pointing instability is not avoidable, it is necessary to investigate its effects on the contrast of the interference fringe. In this paper, the effects of beam pointing instability associated with a twobeam interferometric lithography setup are analyzed. Using geometrical ray tracing technique and basic interference theory, the relationship between the beam tilt angle and interference fringe displacement is established. For a beam pointing instability with random distribution, the resulted fringe contrast is directly proportional to the Fourier transform of the pointing distribution evaluated at π 2 1 . The effect of a pointing instability with normal distribution on interference contrast is numerically investigated.
منابع مشابه
Estimation of pull-in instability voltage of Euler-Bernoulli micro beam by back propagation artificial neural network
The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, c...
متن کاملEstimation of pull-in instability voltage of Euler-Bernoulli micro beam by back propagation artificial neural network
The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, c...
متن کاملDynamic Stability of Nano FGM Beam Using Timoshenko Theory
Based on the nonlocal Timoshenko beam theory, the dynamic stability of functionally gradded (FG) nanoeams under axial load is studied in thermal environment, with considering surface effect. It is used power law distribution for FGM and the surface stress effects are considered based on Gurtin-Murdoch continuum theory. Using Von Karman geometric nonlinearity, governing equations are derived bas...
متن کاملOn the dynamic stability of a flying vehicle under the follower and transversal forces
This paper deals with the problem of the instability regions of a free-free uniform Bernoulli beam consisting of two concentrated masses at the two free ends under the follower and transversal forces as a model for a space structure. The follower force is the model for the propulsion force and the transversal force is the controller force. The main aim of this study is to analyze the effects of...
متن کاملNanoscale Structuring of Gold Surfaces with Laser Manipulated Neutral Cesium Atoms
Atom lithography was invented in the last decade at Bell Labs, where the possibility of producing nanostructures with laser manipulated neutral Na atoms was demonstrated for the first time [1]. Atom lithography [2] is in principle similar to optical lithography, the main difference being that the roles of light and matter are reversed each other. While in optical lithography matter (material ma...
متن کامل